
BBA(CA) V SEM- 2013

(PATTERN)

DOT NET PROGRAMMING-

(503)

Dnyansagar Arts and commerece

 college Balewadi pune

 By

 Prof Gayatri A Amate

INTRODUCTION TO .NET

FRAMEWORK

Unit 1

.NET – WHAT IS IT?

• Software platform

• Language neutral

• In other words:

.NET is not a language (Runtime and a library for

writing and executing written programs in any

compliant language)

WHAT IS .NET

• .Net is a new framework for developing

web-based and windows-based applications

within the Microsoft environment.

• The framework offers a fundamental shift

in Microsoft strategy: it moves application

development from client-centric to server-

centric.

.NET – WHAT IS IT?

Operating System + Hardware

.NET Framework

.NET Application

ADO.NET: Data and XML

Base Class Library

Common Language Runtime

V
is

u
a
l S

tu
d

io
.N

E
T

ASP.NET: Web Services

and Web Forms

VB VC++ VC# JScript …

Common Language Specification

Windows

Forms

FRAMEWORK, LANGUAGES, AND

TOOLS

THE .NET FRAMEWORK

.NET Framework Services

• Common Language Runtime

• Windows® Forms

• ASP.NET

– Web Forms

– Web Services

• ADO.NET, evolution of ADO

• Visual Studio.NET

COMMON LANGUAGE RUNTIME

(CLR)

•CLR works like a virtual machine in executing

all languages.

•All .NET languages must obey the rules and

standards imposed by CLR. Examples:

– Object declaration, creation and use

– Data types,language libraries

– Error and exception handling

– Interactive Development Environment (IDE)

COMMON LANGUAGE RUNTIME

 Common Language Specification (CLS)

Common Type System (CTS)

 Standard class framework Automatic

memory management

• Development

– Mixed language applications

•

•

•

•

–

–

Consistent error handling and safer execution

Potentially multi-platform

• Deployment
–

–

Removal of registration dependency

Safety – fewer versioning problems

COMMON LANGUAGE RUNTIME

Multiple Language Support

• CTS is a rich type system built into the CLR

– Implements various types (int, double, etc)

– And operations on those types

• CLS is a set of specifications that language
and library designers need to follow

– This will ensure interoperability between
languages

COMPILATION IN .NET

Code in VB.NET Code in C#
Code in another

.NET Language

VB.NET compiler C# compiler
Appropriate

Compiler

IL(Intermediate

Language) code

CLR just-in-time

execution

INTERMEDIATE LANGUAGE (IL)

• .NET languages are not compiled to machine code. They

are compiled to an Intermediate Language (IL).

• CLR accepts the IL code and recompiles it to machine

code. The recompilation is just-in-time (JIT) meaning it is

done as soon as a function or subroutine is called.

• The JIT code stays in memory for subsequent calls. In

cases where there is not enough memory it is discarded

thus making JIT process interpretive.

LANGUAGES

•

•

Languages provided by MS

– VB, C++, C#, J#, JScript

Third-parties are building

– APL, COBOL, Pascal, Eiffel, Haskell, ML,

Oberon, Perl, Python, Scheme, Smalltalk…

ASP.NET

• Logical Evolution of ASP

– Supports multiple languages

– Improved performance

– Control-based, event-driven execution model

– More productive

– Cleanly encapsulated functionality

ADO.NET

(DATA AND XML)

• New objects (e.g., DataSets)

• Separates connected / disconnected issues

• Language neutral data access

• Uses same types as CLR

• Great support for XML

VISUAL STUDIO.NET

• Development tool that contains a rich set of

productivity and debugging features

.NET – HIERARCHY, ANOTHER VIEW

CLR

CLR

.NET TOOL

SUMMARY

• The .NET Framework

– Dramatically simplifies development and deployment

– Provides robust and secure execution environment

– Supports multiple programming languages

UNIT 2

Introduction to VB.net

Operators in VB.NET

Arithmetic operators are used to perform arithmetic

calculations such as addition and subtraction.

VB.NET supported arithmetic are listed in the given table.

Logical operators

DATA TYPES

• Data types refer to an extensive

system used for declaring variables or

functions of different types.

• The type of a variable determines how

much space it occupies in storage and

how the bit pattern stored is

interpreted.

DATA TYPES AVAILABLE IN VB.NET

Control Flow

In a program, statements may be executed sequentially, selectively or iteratively.

Every programming language provides constructs to support sequence, selection

or iteration. So there are three types of programming constructs :

 Sequence

 Functions and Procedures

 Selection

 If...Then...Else statement

 Select Case statement

 Iterative

 For...Next Loop statement

 Do...Loop statement

There are mainly 3 types

of loop:

For Loop

While Loop

Do Loop

Example

WINDOWS FORMS

VB.Net programmers have made extensive use of forms to
build user interfaces.

Each time you create a Windows application, Visual Studio
will display a default blank form, onto which you can drag
and drop controls from the Visual Studio Toolbox window

.

CREATE NEW FORM IN VB.NET

Step 1.

 Step 2 : Select project type from New project dialog Box.

When you add a Windows Form to your project, many of the forms properties are set by

default. Although these values are convenient, they will not always suit your

programming needs. The following picture shows how is the default Form look like.

Form Properties

Following table lists down various important properties related to a form. These

properties can be set or read during application execution. You can refer to Microsoft

documentation for a complete list of properties associated with a Form control −

VISUAL STUDIO IDE

Visual Basic.NET IDE is built out of a collection of different windows. Some

windows are used for writing code, some for designing interfaces, and others

for getting a general overview of files or classes in your application.

Label Control

Microsoft Visual Studio .NET controls are the graphical tools you use to build the

user interface of a VB.Net program. Labels are one of the most frequently used

Visual Basic control.

A Label control lets you place descriptive text , where the text does not need to be

changed by the user. The Label class is defined in the System.Windows.Forms

namespace.

Windows Forms

VB.Net programmers have made extensive use of forms to build user

interfaces. Each time you create a Windows application, Visual

Studio will display a default blank form, onto which you can drag and

drop controls from the Visual Studio Toolbox window.

• The first step is to start a new project and build a form.

• Open your Visual Studio and select File->New Project and select

Visual Basic from the New project dialog box and select Windows

Forms Application.

• Enter your project name instead of WindowsApplication1 in the

bottom of dialogue box and click OK button.

• The following picture shows how to crate a new Form in Visual Studio.

Select project type from New project dialog

Box

When you add a Windows Form to your project, many of the forms properties

are set by default. Although these values are convenient, they will not always

suit your programming needs. The following picture shows how is the default

Form look like.

UNIT 3:

Object Oriented Programming in
vb.net

 CLASS AND OBJECT

When you define a class, you define a blueprint for a
data type. This doesn't actually define any data, but it
does define what the class name means, that is, what
an object of the class will consist of and what
operations can be performed on such an object.

Objects are instances of a class. The methods and
variables that constitute a class are called members of
the class

OBJECT-ORIENTED (OO) PROGRAM

CONSTRUCTORS AND DESTRUCTORS

A class constructor is a special member Sub of a class that is

executed whenever we create new objects of that class. A

constructor has the name New and it does not have any return type.

Following program explains the concept of constructor −

 Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'constructor

 Console.WriteLine("Object is being created")

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

 End Class

 When the above code is compiled and

executed, it produces the following result −

 Object is being created

 Length of line : 6

 A default constructor does not have any

parameter, but if you need, a constructor can

have parameters. Such constructors are called

parameterized constructors. This technique

helps you to assign initial value to an object at

the time of its creation as shown in the

following example −

 Class Line

 Private length As Double ' Length of a line

 Public Sub New(ByVal len As Double) 'parameterised constructor

 Console.WriteLine("Object is being created, length = {0}", len)

 length = len

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line(10.0)

 Console.WriteLine("Length of line set by constructor : {0}", line.getLength())

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line set by setLength : {0}", line.getLength())

 Console.ReadKey()

 End Sub

 End Class

 When the above code is compiled and

executed, it produces the following result −

 Object is being created, length = 10

 Length of line set by constructor : 10

 Length of line set by setLength : 6

DESTRUCTOR

 A destructor is a special member Sub of a class that is
executed whenever an object of its class goes out of scope.

 A destructor has the name Finalize and it can neither return
a value nor can it take any parameters. Destructor can be
very useful for releasing resources before coming out of the
program like closing files, releasing memories, etc.

 Destructors cannot be inherited or overloaded.

 Following example explains the concept of destructor −

 Live Demo

 Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'parameterised constructor

 Console.WriteLine("Object is being created")

 End Sub

 Protected Overrides Sub Finalize() ' destructor

 Console.WriteLine("Object is being deleted")

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

 End Class

 When the above code is compiled and

executed, it produces the following result −

 Object is being created

 Length of line : 6

 Object is being deleted

 METHOD OVERLOADING

 visual basic, Method Overloading means defining
multiple methods with the same name but with different
parameters. By using Method Overloading, we can perform
different tasks with the same method name by passing different
parameters.

 Suppose, if we want to overload a method in visual basic, we need
to define another method with the same name but with different
signatures. In visual basic, the Method Overloading is also called
as compile time polymorphism or early binding.

 Following is the code snippet of implementing a method
overloading in a visual basic progra

https://www.tutlane.com/tutorial/visual-basic/vb-methods-functions

 An exception is a problem that arises during the
execution of a program. An exception is a response
to an exceptional circumstance that arises while a
program is running, such as an attempt to divide
by zero.

 Exceptions provide a way to transfer control from
one part of a program to another. VB.Net exception
handling is built upon four keywords - Try, Catch,
Finally and Throw.

 Try − A Try block identifies a block of code for which particular
exceptions will be activated. It's followed by one or more Catch
blocks.

 Catch − A program catches an exception with an exception handler at
the place in a program where you want to handle the problem. The
Catch keyword indicates the catching of an exception.

 Finally − The Finally block is used to execute a given set of
statements, whether an exception is thrown or not thrown. For
example, if you open a file, it must be closed whether an exception is
raised or not.

 Throw − A program throws an exception when a problem shows up.
This is done using a Throw keyword.

 Syntax

 Assuming a block will raise an exception, a
method catches an exception using a
combination of the Try and Catch keywords. A
Try/Catch block is placed around the code that
might generate an exception. Code within a
Try/Catch block is referred to as protected
code, and the syntax for using Try/Catch looks
like the following −

 Try

 [tryStatements]

 [Exit Try]

 [Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

 [Catch ...]

 [Finally

 [finallyStatements]]

 End Try

EXCEPTION CLASSES IN .NET FRAMEWORK

 In the .Net Framework, exceptions are represented by classes. The
exception classes in .Net Framework are mainly directly or indirectly
derived from the System.Exception class. Some of the exception
classes derived from the System.Exception class are the
System.ApplicationException and System.SystemException classes.

 The System.ApplicationException class supports exceptions
generated by application programs. So the exceptions defined by the
programmers should derive from this class.

 The System.SystemException class is the base class for all
predefined system exception.

 The following table provides some of the predefined exception
classes derived from the Sytem.SystemException class −

Exception Class Description

System.IO.IOExcepti

on

Handles I/O errors.

System.IndexOutOf

RangeException

Handles errors generated when a

method refers to an array index

out of range.

System.ArrayTypeMi

smatchException

Handles errors generated when

type is mismatched with the array

type.

System.NullReferen

ceException

Handles errors generated from

deferencing a null object.

System.DivideByZer

oException

Handles errors generated from

dividing a dividend with zero.

System.InvalidCast

Exception

Handles errors generated during

typecasting.

System.OutOfMem

oryException

Handles errors generated from

insufficient free memory.

System.StackOverfl

owException

Handles errors generated from

stack overflow.

HANDLING EXCEPTIONS

 VB.Net provides a structured solution to the
exception handling problems in the form of try and
catch blocks. Using these blocks the core program
statements are separated from the error-handling
statements.

 These error handling blocks are implemented
using the Try, Catch and Finally keywords.
Following is an example of throwing an exception
when dividing by zero condition occurs −

 Live Demo

 Module exceptionProg

 Sub division(ByVal num1 As Integer, ByVal num2 As Integer)

 Dim result As Integer

 Try

 result = num1 \ num2

 Catch e As DivideByZeroException

 Console.WriteLine("Exception caught: {0}", e)

 Finally

 Console.WriteLine("Result: {0}", result)

 End Try

 End Sub

 Sub Main()

 division(25, 0)

 Console.ReadKey()

 End Sub

 End Module

 Exception caught:

System.DivideByZeroException: Attempted to

divide by zero.

 at ...

 Result: 0

 Creating User-Defined Exceptions

 You can also define your own exception. User-

defined exception classes are derived from the

ApplicationException class. The following

example demonstrates this −

 Live Demo

 Module exceptionProg

 Public Class TempIsZeroException : Inherits ApplicationException

 Public Sub New(ByVal message As String)

 MyBase.New(message)

 End Sub

 End Class

 Public Class Temperature

 Dim temperature As Integer = 0

 Sub showTemp()

 If (temperature = 0) Then

 Throw (New TempIsZeroException("Zero Temperature found"))

 Else

 Console.WriteLine("Temperature: {0}", temperature)

 End If

 End Sub

 End Class

 Sub Main()

 Dim temp As Temperature = New Temperature()

 Try

 temp.showTemp()

 Catch e As TempIsZeroException

 Console.WriteLine("TempIsZeroException: {0}", e.Message)

 End Try

 Console.ReadKey()

 End Sub

 End Module

 When the above code is compiled and

executed, it produces the following result −

 TempIsZeroException: Zero Temperature found

 Throwing Objects

 You can throw an object if it is either directly or indirectly derived from the System.Exception class.

 You can use a throw statement in the catch block to throw the present object as −

 Throw [expression]

 The following program demonstrates this −

 Module exceptionProg

 Sub Main()

 Try

 Throw New ApplicationException("A custom exception _ is being thrown here...")

 Catch e As Exception

 Console.WriteLine(e.Message)

 Finally

 Console.WriteLine("Now inside the Finally Block")

 End Try

 Console.ReadKey()

 End Sub

 End Module

UNIT :5

 Architecture Of ADO.Net

 ADO.NET provides a bridge between the front

end controls and the back end database. The

ADO.NET objects encapsulate all the data

access operations and the controls interact

with these objects to display data, thus hiding

the details of movement of data.

THE DATASET CLASS

 The DataSet Class

 The dataset represents a subset of the database.
It does not have a continuous connection to the
database. To update the database a reconnection
is required. The DataSet contains DataTable
objects and DataRelation objects. The
DataRelation objects represent the relationship
between two tables.

 Following table shows some important properties
of the DataSet class:

Properties Description

CaseSensitive Indicates whether string comparisons within the data tables are case-

sensitive.

Container Gets the container for the component.

DataSetName Gets or sets the name of the current data set.

DefaultViewManager Returns a view of data in the data set.

DesignMode Indicates whether the component is currently in design mode.

EnforceConstraints Indicates whether constraint rules are followed when attempting any

update operation.

Events Gets the list of event handlers that are attached to this component.

ExtendedProperties Gets the collection of customized user information associated with the

DataSet.

HasErrors Indicates if there are any errors.

IsInitialized Indicates whether the DataSet is initialized.

Locale Gets or sets the locale information used to compare strings within the

table.

Namespace Gets or sets the namespace of the DataSet.

Prefix Gets or sets an XML prefix that aliases the namespace of the DataSet.

Relations Returns the collection of DataRelation objects.

Tables Returns the collection of DataTable objects.

 THE DATATABLE CLASS

Properties Description

ChildRelation

s

Returns the collection of child

relationship.

Columns Returns the Columns collection.

Constraints Returns the Constraints collection.

DataSet Returns the parent DataSet.

DefaultView Returns a view of the table.

ParentRelatio

ns

Returns the ParentRelations collection.

PrimaryKey Gets or sets an array of columns as the

primary key for the table.

Rows Returns the Rows collection.

The DataTable class represents the tables in the database. It has the following important properties; most of these

properties are read only properties except the PrimaryKey property:

The following table shows some important methods of the DataTable class:

Methods Description

AcceptChanges Commits all changes since the last

AcceptChanges.

Clear Clears all data from the table.

GetChanges Returns a copy of the DataTable with

all changes made since the

AcceptChanges method was called.

GetErrors Returns an array of rows with errors.

ImportRows Copies a new row into the table.

LoadDataRow Finds and updates a specific row, or

creates a new one, if not found any.

Merge Merges the table with another

DataTable.

NewRow Creates a new DataRow.

RejectChanges Rolls back all changes made since the

last call to AcceptChanges.

Reset Resets the table to its original state.

Select Returns an array of DataRow objects.

THE DATAROW CLASS

 The DataRow object represents a row in a

table. It has the following important properties:

 Properties Description

HasErrors Indicates if there are any errors.

Items Gets or sets the data stored in a

specific column.

ItemArrays Gets or sets all the values for the row.

Table Returns the parent table.

The following table shows some important

methods of the DataRow class:

 Methods Description

AcceptChanges Accepts all changes made since this method

was called.

BeginEdit Begins edit operation.

CancelEdit Cancels edit operation.

Delete Deletes the DataRow.

EndEdit Ends the edit operation.

GetChildRows Gets the child rows of this row.

GetParentRow Gets the parent row.

GetParentRows Gets parent rows of DataRow object.

RejectChanges Rolls back all changes made since the last

call to AcceptChanges.

 The DataAdapter Object

 The DataAdapter object acts as a mediator between
the DataSet object and the database. This helps the
Dataset to contain data from multiple databases or
other data source.

 The DataReader Object

 The DataReader object is an alternative to the
DataSet and DataAdapter combination. This object
provides a connection oriented access to the data
records in the database. These objects are suitable
for read-only access, such as populating a list and
then breaking the connection.

DBCOMMAND AND DBCONNECTION OBJECTS

 The DbConnection object represents a

connection to the data source. The connection

could be shared among different command

objects.

 The DbCommand object represents the

command or a stored procedure sent to the

database from retrieving or manipulating data.

 What is DataBinding?

 DataBinding is a powerful feature provided by the .NET
Framework that enables visual elements in a client to connect
to a datasource such as DataSets, DataViews, Arrays, etc. Some
of the visual elements in the client can be TextBox, Datagrid,
etc. A two-way connection is established such that any changes
made to the datasource are reflected immediately in the visual
element and vice versa.

 Below is a graphical description of the concept of databinding:

 DataBinding before .NET

 In the earlier databinding models, the
datasource that could be used was usually
limited to a database. All DBMS systems
provided their own APIs to help in building GUI
applications and quickly bind them to the data.
Programmer did not have the flexibility to
control the databinding process with the result
that most developers avoided the use of
databinding.

 DataBinding with .NET

 The .NET Framework provides a very flexible and
powerful approach to databinding and allows the
programmer to have a fine control over the steps
involved in the whole process. One of the biggest
improvements with .NET has been the introduction
of databinding to web pages through the use of
.NET server-side web controls. Hence, building
data driven web applications has been greatly
simplified. Please note that this article only deals
with data binding in .NET Windows Forms.

ADVANTAGES OF DATABINDING

 Databinding in .NET can be used to write data driven
applications quickly. .NET data binding allows you to write less
code with fast execution but still get the work done in the best
way.

 .NET automatically writes a lot of databinding code for you in
the background (you can see it in "Windows Generated Code"
section), so the developer does not have to spend time writing
code for basic databinding, but still has the flexibility of
modifying any code that he would like to. We get the benefits
of bound as well as unbound approach.

 Control over the Databinding process by using events. This is
discussed in more detail later in the article.

DISADVANTAGES OF DATABINDING

 More optimized code can be written by using

the unbound or traditional methods.

 Complete flexibility can only be achieved by

using the unbound approach.

DATAFLOW DURING DATABINDING

UNIT 5 : CRYSTAL REPORT

CRYSTAL REPORT

 Crystal Report that enables you to generate reports to show
your data retrieved from a database

 how to get data stored in a table of a Microsoft SQL SERVER
database to display on a form of your project.

 Suppose that you want to create a report to display the data
from TblProduct of SaleAndStock database. This database
exists in Microsoft SQL SERVER(in my machine, i have SQL
SEVER 2005). The user that has a right to login to the
database is called sa and its password is 123. This login
information is useful when we connect the database using
VB.NET code. The steps below will help you to get thing done.

STEP 1: ADD A DATASET TO THE PROJECT

Now create a new project in Visual Studio 2008.

In my case, i created a project called ReportVB.

Right-click the project name->Add->New Item.

Under Categories, select Data and under

Templates select Dataset.

 On the Server Explorer next to the active

dataset window, click Connect to Database icon

to add a connection to the database server. On

the Add Connection dialog, click Change button

of the Data source block to show the Change

Data Source dialog

 Then on the Change Data Source dialog, select
Microsoft SQL Server. After that you will see a new
Add Connection dialog that shows the Server
name box. In this box, you need to enter the name
of your SQL SERVER. In my case, this name is Dcc-
pc.

 +In the Log on to the server block, select Use SQL
Server Authentication. Then type the user name
and password in to the User name box and
Password box.

 In the Connection to a database, select Select

or enter a database name option. Then click

the dropdown list to select SaleAndStock

database(a sample database used in this

tutorial).

 Click Test Connection button to test the

connection to the SQL SERVER. If there is a

dialog showing that the Connection is succeed,

it means that you can move to the next step. If

an error occurs you need to check what you

have provided again.

 Step 2: Add the TblProduct table to the dataset

 After you connected successfully to the SQL
Server database, look Server Explorer again
and click Data Connection to expand it then
select the connection that you have created in
the previous step. Then click Tables to expand
and drag the TblProduct table to the dataset
designer window.

 Step 3: Add a Crystal Report and link to the

table of dataset

 Now you have a schema of a dataset that

connects to the TblProduct of the SaleAndStock

database located in SQL Server. The next step

is to add a Crystal Report item in to your

project.

 Right-click the project name(ReportVB)->Add-

>New Item. On the New Item dialog, under

Categories select Reporting and under

Templates select. You will see the Crystal

Reports Gallery dialog. Select As a Blank

Report to create a blank report and accept the

default name(CrystalReport1).

 To link to the table of the dataset, right-click

Field Explorer next to the active window of

CrystalReport1 then select Database Expert.

You will see the dialog as shown below:

CRYST

 Select Project Data and select ADO.NET DataSets,

then you will see the TblProduct table. Select this

table and click the arrow button to add the table to

the Selected Table area. Click OK.

 +Now back to the active window of the

CrystalReport1 and drag fields of TblProduct table

that you want to the designer area of the

CrystalReport1.

 Step 4: Add a Crystal Report Viewer control to

the form of the project(look for this control in

the Toolbox) and writing VB.NET code on the

form load event.

 +Accept the default name of the Crystal Report

Viewer(CrystalReportVewer1)

 Open the code window by double-click the form and in the Form1_load procedure write the following code:

 Dim rpt As New CrystalReport1() 'The report you created.

 Dim myCon As SqlConnection

 Dim myAdapter As SqlDataAdapter

 Dim myDataset As New DataSet1() 'The DataSet you created.

 myCon = New SqlConnection("Server=(local);Database=SaleAndStock;User=sa; Password=123;")

 myAdapter = New SqlDataAdapter("Select * FROM TblProduct", myCon)

 myAdapter.Fill(myDataset, "TblProduct")

 rpt.SetDataSource(myDataset)

 CrystalReportViewer1.ReportSource = rpt

 You also need to add the line of code below to the general declaration section of form module:

 Imports System.Data.SqlClient

 Therefore, the full code becomes as shown below:

 Imports System.Data.SqlClient

 Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 Dim rpt As New CrystalReport1() 'The report you created.

 Dim myCon As SqlConnection

 Dim myAdapter As SqlDataAdapter

 Dim myDataset As New DataSet1() 'The DataSet you created.

 myCon = New SqlConnection("Server=(local);Database=SaleAndStock;User=sa; Password=123;")

 myAdapter = New SqlDataAdapter("Select * FROM TblProduct", myCon)

 myAdapter.Fill(myDataset, "TblProduct")

 rpt.SetDataSource(myDataset)

 CrystalReportViewer1.ReportSource = rpt

 End Sub

 End Class

 +Run your project and see the result.

 Now the designing part is over and the next

step is to call the created Crystal Reports in

VB.NET through Crystal Reports Viewer control .

 Select the default form (Form1.vb) you created

in VB.NET and drag a button and

CrystalReportViewer control to your form.

 Select Form's source code view and put the

code on top.

 Imports CrystalDecisions.CrystalReports.Engine

 Put the following source code in the button

click event

 Imports CrystalDecisions.CrystalReports.Engine

 Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles Button1.Click

 Dim cryRpt As New ReportDocument

 cryRpt.Load("PUT CRYSTAL REPORT PATH
HERE\CrystalReport1.rpt")

 CrystalReportViewer1.ReportSource = cryRpt

 CrystalReportViewer1.Refresh()

 End Sub

 End Class

 NOTES:
cryRpt.Load("PUT CRYSTAL REPORT PATH
HERE\CrystalReport1.rpt")

The Crystal Reports is in your project location, there you
can see CrystalReport1.rpt . So give the full path name of
report here.

After you run the source code you will get the report like
this.

